
Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol.104, 567 (1999)]

Applicability of Metrology to
Information Technology

Volume 104 Number 6 November–December 1999

Martha M. Gray

National Institute of Standards
and Technology,
Gaithersburg, MD 20899-0001,

In 1959 the Director of the National
Bureau of Standards declared “The emer-
gence of science and technology as the
paramount concern of the Nation in the
20th century . . . demanded the highest order
of measurement competence, in order to
provide the standards and measurement
techniques on which maintenance of
scientific progress depended.” Since 1959,
information technology hasemerged as
having a global impact on all facets of

industry. However, the “standards and
measurement techniques” needed to main-
tain the scientific progress of information
technology into the next century may not be
in place. This paper discusses the current
state of software metrics.

Key words: function point metrics; in-
formation technology; software metrics.

Accepted: October 8, 1999

Available online: http://www.nist.gov/jres

1. Background

In Measures for Progress: A History of the National
Bureau of Standards,Cochran describes the climate in
1900 when the legislation to create the National Bureau
of Standards was proposed [1]. (The National Bureau of
Standards became the National Institute of Standards
and Technology, NIST in1988.)

“The builders of America’s industrial complex had
little interest in standards as such, but the scientists,
engineers, and experimenters working for industry
or independently found themselves increasingly
hampered without them. The need for a Federal
bureau of standards was talked about for almost
20 years before legislation for its establishment was
introduced in 1900. By then the necessity had
become imperative as science and industry, ready
to take giant steps in the new century, looked for
better measurements and more uniformity, pre-
cision, and control in the laboratory, factory, and
plant.”

Metrology, the“science of measurement” [2], has ad-
vanced for some sciences such as chemistry and physics

for over 200 years. Since information technology and
computer science are fairly new sciences they have not
been subjected to the metrological scrutiny that other
sciences have. The importance of metrology has always
been paramount to NIST. In 1959 the director, in a
speech designed to generate support for new facilities,
declared [3]:

“The emergence of science and technology as
the paramount concern of the Nation in the 20th

century . . . demanded the highest order of mea-
surement competence, in order to provide the
standards and measurement techniques on which
maintenance of scientific progress depended.”

This was the eve of the information age. The science of
information technology and global use of computers
were not even imagined. Yet the importance of measure-
ment competence for scientific progress was deemed
essential. We are still perhaps on the eve of “giant steps
in the new century” for information technology. Wewill
still need “better measurements and more uniformity,
precision, and control” to achieve these “giant steps.”

567



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

2. Software Measurements

In most environments, measurement is an established,
routine, customary part of daily practice. Many prod-
ucts are bought and sold based on what they weigh or
what they measure. Measurement of software has not
progressed to the point where there are established,
routine, customary measures of software that are used in
the daily development, purchase or sale of software. The
oft quoted Lord Kelvin said [4]:

“When you can measure what you are speaking
about and express it in numbers, you know some-
thing about it; but when you cannot measure, when
you cannot express it in numbers, your knowledge
is of a meager and unsatisfactory kind; it may be
the beginning of knowledge, but you have scarcely,
in your thoughts, advanced to the stage of science.”

What measurements are appropriate for information
technology? If the field is narrowed, what measurements
are appropriate for software? Grady and Caswell [5]
state that “A software metric defines a standard way of
measuring some attribute of the software development
process. For example, size, cost, defects, communica-
tions, difficulty, and environment are all attributes.
Examples of attributes in the physical world are mass,
length, time, and the like.” This definition limits metrics
to the software development process but it does connect
the concept of metric to specific attributes of the
software product. Some attributes, like size and time,
certainly are easier to measure and more easily correlate
to the physical world of metrology than defects or
difficulty.

There are a large number of different types of metrics
that are used for the software development process.
Steve McConnell includes a table of “Useful Metrics” in
his handbook on software construction that includes [6]:

Size: total lines of code written, total
comment lines, total data declara-
tions, total blank lines.

Productivity: work-hours spent on the project,
work-hours spent on each routine,
number of times each routine
changed, dollars spent on project,
dollars spent per line of code,
dollars spent per defect.

Defect Tracking: severity of each defect, location of
each defect, way in which each de-
fect is corrected, person responsible

for each defect, number of lines af-
fected by each defect correction,
work hours spent correcting each
defect, average time required to find
a defect, average time required
to fix a defect, attempts made to
correct each defect, number of new
errors resulting from defect cor-
rection.

Overall Quality: total number of defects, number of
defects in each routine, average
defects per thousand lines of code,
mean time between failures, com-
piler-detected errors

Maintainability: number of parameters passed to
each routine, number of local vari-
ables used by each routine, number
of routines called by each routine,
number of decision points in each
routine, control-flow complexity in
each routine, lines of code in each
routine, lines of comments in each
routine, number of data declarations
in each routine, number of blank
lines in each routine, number of go-
tos in each routine, number of input/
output statements in each routine.

Peng and Wallace [7] summarize metrics related to
software error analysis in the following categories:

Metrics for all phases: problem metrics, cost and
ef for t metr ics, change
metrics, fault metrics.

Requirements metrics: primitive size metrics, re-
quirements traceability,
completeness, fault-days
number and function points.

Design metrics: size (primitive size metrics,
number of modules), fault
(primitive fault metrics),
complexity (primitive com-
plexity metrics, coupling,
cohesion, structural fan-in/
fan-out, information flow
metric), design inspection
(staff hours per major defect
detected, defect density),
test related (test related
primitives).

568



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

Implementation metrics: size (lines of code, halstead
software science metrics),
control structure (number of
entries/exits per module,
cyclomatic complexity),
data structure (amount of
data, live variables, variable
scope, variable spans), test
(primitive defect/error/fault
metrics, fault density, defect
age, defect response time,
defect cost, defect removal
efficiency, primitive test
case metrics, statement
coverage, branch coverage,
path coverage, data flow
coverage, test coverage),
failure (mean time to fail-
ure, failure rate, cumulative
failure profile).

McConnell’s table and Peng and Wallace’s list
certainly suggest that there are a large number of
metrics which can be used for software measurement.
However, computer scientists and software engineers
cannot usually even agree on what is important to
measure, how to measure, or why we are measuring.
Since the scientific process usually requires asking a
question first, why are we trying to measure software”
If we don’t know the why then the what and how are
meaningless.

2.1 Why Measure

Since there are so many kinds of software measures
there must be many reasons for measuring. As stated in
the background section of this paper, NIST has tradi-
tionally stated that commerce, especially global com-
merce, is dependent on measurement technology so that
buyers and sellers can agree on what is being bought or
sold.

Roger Pressman states that [4]:

“Software is measured for many reasons: (1) to
indicate the quality of the product, (2) to assess the
productivity of the people who produce the
product, (3) to assess the benefits (in terms of
productivity and quality) derived from new soft-
ware engineering methods and tools, (4) to form
a baseline for estimation, and (5) to help justify
requests for new tools or additional training.”

Stephen H. Kan states [8]:

“Measurement is becoming more important in
software development. In this modern-day quality

era, customers demand complex software solutions
of high quality. . . . Furthermore, various software
engineering techniques have emerged in
the past decade: CASE tools, formal methods, soft-
ware fault tolerance, object technology, and the
like. To improve productivity and quality, software
developers are faced with an enormous choice of
methods, tools, and standards. However, as Fenton
(1993) contended, there is very little quantitative
data and objective evaluation of various methods in
software engineering. There is an urgent need for
proper measurements to quantify the benefits and
costs of these competing technologies.”

Notice that both Pressman and Kan emphasize
measuring software to improve quality and productivity,
judge benefits, etc. Other authors mention reasons such
as better understanding software development, con-
trolling software projects, improving software develop-
ment, estimating the costs or effort of a software devel-
opment project, and facilitating the testing process.

2.2 Measure What

In traditional physical metrology theory there are
established principals for quantities, units, scales, and
uncertainty in measurement. A quantity is an “attribute
of a phenomenon, body or substance that may be distin-
guished qualitatively and determined quantitatively” [9].
Examples include length, time, mass, and temperature.
For these quantities, the concepts of units, scales and
uncertainty are givens. If a desk is twice as long as a
small table, the unit the desk is measured in is mathe-
matically twice the units of the small table and the scale
of this measurement would hold for other measure-
ments. It also would be possible to identify the uncer-
tainty of the measurement given the techniques used.

Information technology andmore specifically soft-
ware engineering have not traditionally used these con-
cepts of fundamental units, scales, and uncertainty.
There are volumes written on software measurements
and metrics usually referencing measures for either the
software product or the process of software develop-
ment. The IEEE Standard Glossary of Software
Engineering Terminology defines metric as[9]:

“A quantitative measure of the degree to which a
system, component, or process possesses a given
variable.”

This definition correlates to the definition of quantity
given above from theInternational Vocabulary of Basic
and General Terms in Metrology(VIM), but the con-
cepts of units, scales and expressing uncertainty are not
included [10]. They are also missing from most other
definitions of metrics or measurements for software.

569



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

The IEEE Standard Glossary of Software Engineer-
ing Terminologyalso defines quality metric as [11]:

“(1) A quantitative measure of the degree to which
an item possesses a given quality attribute.
(2) A function whose inputs are software data and
whose output is a single numerical value that can
be interpreted as the degree to which the software
possesses a given quality attribute.”

Peng and Wallace [12] differentiate the terms metric
and measure defining metric as: “the mathematical
definition, algorithm or function used to obtain a quan-
titative assessment of product or process.” They define
measure as “the actual numerical value produced by a
metric.”

Perhaps a more interesting definition is one that was
eliminated from the 1990 edition (ANSI X3.172-1990)
but included in the 1982 edition of the American
National Dictionary for Information Processing
Systems, ANSI X3/TR-1-82. This old edition contains a
definition of “measure of information” [13]:

“(ISO) A suitable function of the probability of
occurrence of an event or of a sequence of events
from a set of possible events. Ininformation theory,
the term “event” is to be understood as used in the
theory of probability. For instance, an event may
be: — the presence of a givenelementof a set; —
the occurrence of a specifiedcharacter or of a
specified word in a givenpositionof a message.”
(Italics are part of definition indicating words that
are also defined in this dictionary.)

This definition is perhaps the most interesting be-
cause one of the problems in information technology
and especially in software engineering has been the lack
of metrics or measures that can be used to predict any-
thing. Software is usually not delivered on time or under
budget, sometimes being years late and factors of 10 off
in the budget figures. Metrics on the uncertainty or
predictability of the software’s behavior are not often
used and remain almost impossible to determine.

2.3 Common Measures

When commercial off the shelf software (COTS) is
purchased, the only measures listed on the labels are
usually the hardware requirements for running the soft-
ware package. For example, the software may say that
64 MB of RAM and 100 MB hard disk space are

required to run the software. What the software delivers
is not measured in any kind of units. For example, a
word processing package does not say that this package
delivers 20 units of some attribute. The package may list
what functions are provided but there are no common
units of measure for what is delivered or the functional-
ity of what is delivered. The same may be said for any
kind of commercial software package. Even if some
common measure were determined, the 20 units that a
word processing package delivers may not be as useful
for the task at hand as the 20 units that a spreadsheet
may deliver. A custom developed package may deliver
40 units to process your car insurance while a missile
guidance system may deliver a very different 40 units.

This common measure is not only a problem for com-
puter software. The most common measures for many
things seem to be time and size. But for many complex
things, size and time no longer seem to be the most
important information for forming a judgement about
the item in question.

For example, a tape of a movie at the video rental
store tells how many minutes the movie runs in addition
to the title, actors and actresses, etc. A person does not
usually rent the tape because it has the most minutes
anymore than they buy a software package because it is
the biggest. The amount of minutes is important if a
time limit is a problem but usually not the most impor-
tant reason for a tape rental. A book is not usually
judged by the number of pages but by the content of the
pages. The functionality of the software and its ability
to get the job done are what is important for software
purchases, not usually the size of the software.

Another example of a common measure is time. Time
is important for billing telephone calls but certainly
does not indicate the content of the call. Runtime is
important if the software is so slow that the user won’t
use it or it can’t process the transactions required for the
application. Certainly elapsed time is a critical factor in
the development process and may partially determine if
a product is going to be marketable. However the quality
and functionality of the software may be more important
than the time a product is delivered. Customers have
been willing to wait for delayed products.

Thus time and size have some importance as mea-
sures but do not seem to be the most important for
purchase decisions or usability of the software. Yet, size
measurements and time measurements are the most
common metrics used for software and application de-
velopment, either as direct measures or derived mea-
sures as lines of code, productivity, costs, etc.

570



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

3. Size Measurements
3.1 Lines of Code

One of the most common forms of measurement for
software development projects is lines of code (LOC) or
thousands of lines of codes (KLOC), or standard lines of
code (SLOC). Counts of lines of code are not an indica-
tion of the functionality or content of the program but
they are an indication of the size of the program. Bene-
fits of using LOC are that they are easily counted for all
programs, there are models based on these measures,
and much literature on these measures. From LOC other
metrics can be developed such as productivity (LOC/
staff-month) and quality (errors/LOC). If LOC is used
for programs written in the same programming
language, rates of errors, faults and failures can be com-
pared. In addition, costs and documentation can be com-
puted based on LOC. Problems with lines of code
measures are that they can only be used after the product
is completed, they are programming language-depen-
dent, “they penalize well-designed shorter programs,
that they cannot easily accommodate nonprocedural
languages, and that their use in estimation requires a
level of detail that may be difficult to achieve (i.e., the
planner must estimate the LOC to be produced long
before analysis and design have been completed.)” [14]
Lines of code counts are especially difficult for estimat-
ing projects that involve new technologies. For example,
how can LOC be used for a project that will involve
client-server distribution using JAVA applets when local
experience is with a mainframe COBOL application?

Another problem is that there are a variety of ways to
count lines of code and controversy on what should be
included, counting only executable lines, including data
definitions, including comments, including job control
commands. Thus knowing the number of lines of code
does not allow you to make comparisons unless you
know what types of lines were counted.

The other major problem with lines of code is de-
scribed by T. Capers Jones [15]: “productivity mea-
sures expressed in source lines form paradoxically went
backwards as real productivity improved. . . . Thereason
for this had been known for more than 200 years by
manufacturing managers . . . if amanufacturing process
involves a substantial percentage of fixed costs, and
there is a decline in the number of units manufactured,
then the cost per unit must go up. Software, as it turns
out, involves a substantial percentage of fixed or inelas-
tic costs that are not associated with coding. When more
powerful programming languages are used, the result is
to reduce the number of ‘units’ that must be produced
for a given program or system, and the cost per unit must
go up.”

3.2 Function Metrics

The Draft International Standard for the definition of
functional size measurement [16] summarizes the need
for a different sizing method in the introduction to the
standard.

“Organizations engaged in software engineering
have struggled for years in search of acceptable
quantitative methods for measuring process effi-
ciency and effectiveness, and for managing soft-
ware costs, for the systems they acquire, develop,
enhance or maintain. One critical, and particularly
elusive, aspect of this measurement requirement
has been the need to determine software size.
Numerous software sizing methods have been
proposed in the past. These included numbers of
source lines of program code and various measures
derived from the technical characteristics of the
software.

These methods have limitations in that they can not
be:

• applied early in the software development
process,

• applied uniformly throughout the software’s
life time,

• easily interpreted in business terms, or

• meaningfully understood by users of the soft-
ware.

The concept of Functional Size Measurement
(FSM) overcomes these limitations by shifting the
focus away from measuring how the software is
implemented to measuring size in terms of the
functions required by the user.”

Alan Albrecht of IBM first publicized the function
point metric in 1979. Function point metrics attempt to
measure the size and complexity of the software not the
number of lines of code that it takes to code the soft-
ware. “Microsoft Word for Windows version 6.0,
for example, has 5000 function points in total” [17].
Number of user inputs, number of user outputs, number
of user inquiries, number of files and number of external
interfaces are counted and weighed for complexity.
Benefits of this metric include being programming
language-independent (so they can be used for non-
procedural languages), and being easier to use as an
estimating metric since most of the items that are
measured are known before the coding begins. Function
metrics have even been applied to object oriented analy-
sis and design. “Opponents claim that the method

571



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

requires some “sleight of hand” in that computation is
based on subjective, rather than objective, data; that
information domain information can be difficult to col-
lect after-the-fact: and that FP has no direct physical
meaning—it’s just a number” [18].

There have been some studies however, that seem to
indicate that function points “are much more reliable
than previously suspected” [19]. This was based on a
study at the Massachusetts Institute of Technology.
Another study completed at the University of New
South Wales analyzed the “consistency and limitations
of functions points as ana priori measure of system size
compared to the traditional lines of code measure.” This
study concluded that “function points are a more consis-
tent a priori measure of system size” [20]. Function
points are usually used like lines of code counts for
productivity (FP/staff-month), quality (errors/FP), etc.

Function points “are derived using an empirical
relationship based on countable measures of software’s
information domain and subjective assessments of soft-
ware complexity” [21]. “One of the initial design crite-
ria for function points was to provide a mechanism that
both software developers and users could utilize to
define functional requirements. . . . herefore, one of the
primary goals of FPA is to evaluate a systems’s capabil-
ities from a user’s point of view. . . . From a user’s
perspective, a system helps them do their job by provid-
ing five basic functions. Two of these address the data
requirements of an end user and are referred to as data
functions. The remaining three address the user’s need
to access data and are referred to as transactional func-
tions” [22]. These five basic functions are internal log-
ical files, external interface files, external inputs, exter-
nal outputs, and external inquiries.

Internal Logical Files (ILF) are “logical groupings of
data in a system, maintained by an end user.” External
interface files are “groupings of data from another sys-
tem that are used only for reference purposes.” External
inputs are those functions that allow users to add,
change, and delete data in internal logical files. External
outputs allow users to produce outputs of data that is
either in internal logical files or external interface files.
External inquiries allow users to select and display
specific data from internal logical files or external
interface files.

Once these basic counts are completed there are two
adjustment factors used to calculate function points, the
functional complexity of each function and a value ad-
justment factor. The complexity factors are low, aver-
age or high. The value adjustment factor is an attempt
to weigh a system“s technical and operational charac-
teristics. The scores from these fourteen adjustment
areas may increase or decrease the unadjusted function
point count. These fourteen areas have sometimes been

called processing complexity factors or general applica-
tion characteristics.

1. Data Communications—data and control infor-
mation used in the application is sent or re-
ceived over communication facilities including
“various networks, concentrators, multiplexers,
and private lines” [23] and LANs.

2. Distributed Data Processing—“the application
uses data stored, accessed, or processed on a
storage or processing system other than the one
used in the main program routines” [24].

3. Performance—there are performance objec-
tives such as response or throughput which in-
fluence the design, development, installations,
and support of the application.

4. Heavily-used configuration—there are heavy
use considerations or special main memory or
storage considerations.

5. Transaction rate—there is a high transaction
rate which influences the design, etc.

6. On line inquiry and data entry—these are char-
acteristics which influence the security and con-
trol functions of the application.

7. End-User efficiency—there are human machine
factors for “user-friendliness”, etc. which influ-
ence the design.

8. On-line update—there are requirements for on-
line update of internal logical files. This effects
the design of the system to include audit and
recovery systems.

9. Complex Processing—there could be logical or
mathematical complexities, control, security, or
other attributes that add complexities.

10. Reusability—attributes which require analysis,
planning, co-ordination or special design to in-
terface with other programs or processing.

11. Conversion and installation ease—includes
conversion and installation plan or tools.

12. Operational ease—includes purpose to
“provide effective but easy startup, backup, er-
ror recovery, and shutdown procedures” [25].

13. Multiple sites—application designed, devel-
oped, and supported for multiple sites or imple-
mentations.

14. Flexibility—application has been designed, de-
veloped, and supported to facilitate change
which includes planning for future maintenance
and modification.

The concept of function points seems to be sound,
i.e., that the size and complexity of software can be

572



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

judged by items such as the number of files utilized. No
matter what language was used to code such a system,
the number of files utilized would remain the same.

4. Derived Measurements

Other measures are used for evaluating and estimat-
ing custom developed software. These measures are not
usually used for commercial off the shelf packages.
Measures exist for quality, complexity, reliability, and
maintainability of the software, and productivity of the
software developers. There are also measures for esti-
mating the cost or the timing of a software development
project. Quite often these measures use lines of code or
function points as a basis for measures such as number
of defects per lines of code, number of function points
per staff month.

4.1 Quality Measures

Quality measures exist for the process of developing
software and for the software product itself. Most qual-
ity measures relate to the software product itself but the
increased acceptance of ISO 9000 standards has made
some of the process model measures more widely used.

4.1.1 Software Development Process Models

The development of software can be accomplished
using many methods, processes, and models. Using the
theory that better quality in the method, process or
model used for development will produce better quality
software, there is a growing body of measurements for
evaluating or assessing the development process.
Stephen H. Kan [26], describes software development
process models and assessments which include:

1. The waterfall development model
2. The prototyping approach
3. The spiral model
4. The iterative development process model
5. The object-oriented development model
6. The clean room methodology
7. SEI Process Capability maturity Model (CMM)
8. SPR Assessment
9. Malcolm Baldrige Assessment

10. ISO 9000

These models and approaches define, evaluate, as-
sess, etc. the way that software is developed, i.e., the
development process itself. The measurements are of
the process and the organization completing the process,
not the final software that is produced. Most of the
assessments have questions which have yes no answers
such as was the version of the software clearly identi-
fied, were there page numbers in the documentation,

was the correct approval identified, etc. At the end of
this “audit” questions, such as, was the model or process
closely or correctly followed, can be answered based on
the number of positive answers.

These measures are measures of the software devel-
opment process and can identify if the process or model
was being followed but they do not assess the quality or
attributes of the final software.

4.1.2 Software Product Quality Measures

There are two types of software product quality mea-
sures: measures for errors, defects, faults, and failures
and measures for more subjective judgements such as
customer satisfaction. Errors, defects, faults, and
failures usually use size measurements as part of the
measures, e.g., number of defects per lines of code or
number of defects per function point. User satisfaction is
not as specific and may even be measured by number of
calls to the help line or complaints to the support staff.
All of these measures are used after a software product
is developed, not before the development process.

The definitions for these errors, defects, faults, and
failures vary widely. The IEEE Guide for the Use of
IEEE Standard Dictionary of Measures to Produce
Reliable Software [27], defines these terms as follows:

Defect. A product anomaly. Examples include such
things as (1) omissions and imperfections
found during early life cycle phases and
(2) faults contained in software sufficiently
mature for test or operation. See also “fault.”

Error. Human action that results in software contain-
ing a fault. Examples include omission or
misinterpretation of user requirements in a
software specification, and incorrect trans-
lation or omission of a requirements in the
design specification (see ANSI/IEEE Std
729-1983).

Failure. (1) The termination of the ability of a func-
tional unit to perform its required function.
(ISO;ANSI/IEEE Std 729-1983). (2) An event
in which a system or system component does
not perform a required function within speci-
fied limits. A failure may be produced when
a fault is encountered.

Fault. (1) An accidental condition that causes a
functional unit to fail to perform its required
function. (ISO;ANSI/IEEE Std 729-1983). (2)
A manifestation of an error in software. A
fault, if encountered, may cause a failure.
Synonymous with bug.

573



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

There are a number of metrics that relate the number
of problems, errors, faults, or defects (e.g., defect
density metric) per lines of code of function points.
Sometimes these are tracked per release or per phase in
the development process. These metrics usually include
the number of problems identified, when they were
corrected, what type of problem (e.g., orthogonal defect
classification), and probable cause (defect cause
analysis).

4.1.3 Complexity Metrics

There are metrics that are used to describe the actual
software itself, the design and coding structures of the
software. These metrics can be used on traditional soft-
ware, after the software is written to determine how
complex the software is and perhaps indicate what the
rate of defects might be. Additional studies of the corre-
lations between complexity and defects haven’t proven
the correctness of these metrics but work is ongoing for
some of them.

4.1.3.1 Halstead’s Measures for Software Science

Halstead proposed, in 1977, that a computer program
is a “collection of tokens that can be classified as either
operators or operands” [28]. Based on the number of
distinct operators and operands that appear in a pro-
gram, Halstead developed equations for estimating the
length of the program, number of faults, complexity,
and other factors.

This software science has had its criticism and later
studies have not confirmed the validity of the equations.
This work did, however, stimulate other research in
software science and metrics.

4.1.3.2 McCabe’s Cyclomatic Complexity

McCabe proposed in 1976 that a measure, cyclomatic
complexity, could be developed based on the number
and kind of independent paths in a program, that could
be used to indicate a program’s testability and maintain-
ability. Many studies have been completed on the
relationship of this metric based on decisions and
branches and defect rates of the software. Some suggest
strong correlations for complexity and defects while
other suggest that this correlation lessens when adjusted
for program size.

4.1.3.3 Syntactic and Structure Metrics

There are other measures that have been used which
measure either the syntax of the software, for example
whether loops are used or IF-THEN-ELSE statements,
or the structure of the software, for example, the num-
ber of modules used, the number of modules called.

These software design metrics seem to be used the same
way that the cyclomatic complexity metrics are used, to
help judge the quality of the software.

All of these quality metrics have one thing in com-
mon. They can only be used to judge the software after
the software is written. Their use may suggest better
design techniques and techniques which may improve
the quality of the software, but they are not useful for
estimating the size or cost of a software development
project.

4.2 Estimation

One of the most plaguing problems in the software
industry is the problem of estimating the schedule and
cost of software development projects. Historically
projects have been typically described as over budget
and delivered late. “52.7 % of projects were over budget
and late with fewer functions than specified” [29].
When new development techniques, new development
languages, or new application platforms are introduced
most estimation models have not been very accurate.
The highest accuracy rate occurs when there is a good
historical baseline available for comparison.

The Software Engineering Laboratory (SEL) of the
Institute for Information Technology of the National
Research Council of Canada published a report,Soft-
ware Cost Estimation and Control[30] based on their
study of software cost estimation methodologies. They
classified the estimation process as either model based
or analogy based. They describe formal models as
follows:

“Formal models attempt to quantify all input to the
cost estimation process, and then apply a set of
equations that describe the relationships between
the inputs and the outputs of the cost estimation
process. The equations are developed through anal-
ysis of historical data and must be calibrated to
each individual development environment.”

The Software Engineering Laboratory found that
most organizations did not use formal methods. There
were two reasons cited for not using these models [31].
“First, there was a lack of confidence in the ability of a
model to outperform an expert. Managers felt that these
models were expensive to implement and provided little
benefit. ... The second problem with the models is the
lack of historical data available to calibrate the model.
Proponents of models emphasize the fact that models
are not transferable between organizations and that there
is a great deal of effort required to calibrate a model for
a particular organization. Without calibration, values
produced by the model can fluctuate radically.”

574



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

4.2.1 COCOMO

In 1981 Barry Boehm introduced COCOMO
(COnstructive COst MOdel). COCOMO is software
estimation models for custom designed software. The
basic model can be used to estimate a software develop-
ment effort and cost based on program size given in
estimated lines of code. The intermediate model com-
putes the software development effort based on program
size and a set of other attributes that include character-
istics of hardware, personnel, and the software develop-
ment process. The advanced model includes all of the
variables of the intermediate model plus adds the impact
of these other attributes on each step of the development
process.

There are three classes of software projects which
have COCOMO models defined; small, simple software
projects, medium software projects with a mix of re-
quirements, and embedded software. The results of
using these popular models have not been stellar.
Estimates seem close to the actual completed project
only when the historical data used for comparison is
very close to the variables of the estimated project, that
is, when the types of software, language used, and expe-
rience of the programmers are similar. This has not
proven to be very successful when new technologies are
introduced.

4.2.2 Putnam Estimation Model

The Putnam Estimation Model relates number of
lines of code to effort and development time. It assumes
a specific distribution of effort over the life of a tradi-
tional software development project (definition, func-
tional design and specification, design and coding, test-
ing, operation and maintenance). This model is usually
used to show how additional effort in one phase of the
development cycle can shift the delivery schedule.

4.2.3 Esterling Time-Study Model

The Esterling model is a more in-depth study of the
interaction of programmers and the environment of the
software development project. Esterling analyzed the
amount of productive work from staff after considering
nonwork interruptions, interruptions from staff working
on projects, administrative distractions, and overtime.
He then graphed the relative project cost, estimating
scenarios for “best case” programmers, “typical” pro-
grammers, and “worst case” programmers. Based on
this research, Esterling made the case that adding addi-
tion staff to programming projects may actually cost
more money and slow development time compared to
just leaving the existing number of staff members.

4.2.4 Estimation by Analogy

The Software Engineering Laboratory (SEL) of the
Institute for Information Technology of the National
Research Council of Canada issued report on software
cost estimation which stated that “The bulk of the
current literature and research on cost estimation is
devoted to formal models, particularly as relates to new
system development. ...we found that formal models are
not in general used by estimators as a primary tool for
cost estimating” [32]. “By an overwhelming majority,
informal analogy was the most commonly used estimat-
ing method for all types of software and for all organiza-
tions. Estimators used their past projects as a basis for
estimating the cost of future projects” [33].

Informal analogy based estimating involves compar-
ing a past project with the current project. Most often
there is no database of appropriate data for the compari-
son but simply the memory of past participants. “The
database consisted of their memories or the memories of
their colleagues. Estimators often admitted that some
information was available on past projects, but it was
either in a form too difficult to access, or they did not
believe accessing the information would improve the
accuracy of the estimate” [33].

If there is data available, the SEL found that the data
usually was not accurate, was not accessible, or not
specified in a useful way. As an example, time sheets
may be the only data source for time and labor break-
downs. A cost center does not always indicate what
project or part of a project was actually being worked
on. The data from time sheets may also only be in paper
form since the personnel files may not be accessible.

The SEL found that the only time fairly accurate cost
estimates of software projects were achieved was in
situations with the following characteristics [34]:

• The users are experienced in the system, know
what they want, and can express what they want.

• The requirements are clear, precise, correct, and
complete.

• The project duration is short.

• The manpower loading is small.

• The people doing the estimation are experienced in
the application domain and have developed similar
systems.

• The development environment and development
process are familiar to all people involved.

• Staff turnover is low both among the developers and
the users.

• No unfamiliar software or hardware from outside
suppliers is to be integrated with the final product.”

575



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

4.2.5 Estimation Using Function Points

Capers Jones [35] states that, “One of the major
challenges of software cost and schedule estimation is
“sizing,” or predicting the amount of source code and
other deliverables that must be built to satisfy the
requirements of a software application. Sizing is a criti-
cal precursor to software cost estimating, whether
estimation is done manually or by means of a commer-
cial software cost estimating tool.” Function points can
be used to size a software development project. They
cannot be used directly to estimate costs, effort, or
delivery time because variables such as the experience
of the staff, tools used, and methodologyused for devel-
opment also affect costs, effort and delivery time. Past
experience or industry benchmarks can facilitate these
estimates. There are also other tools based on function
points which estimate paper deliverables such as docu-
mentation and test cases for the software project.

If there is not a historical database of past projects,
personnel and organizations involved, that is comparable
to a new project, formal models for estimating are diffi-
cult to use. On the other hand, estimation by analogy has
not proven to be very accurate. Using function points for
estimation seems promising both for formal model use
and for estimating projects using new technologies.

The International Function Point Users Group has
supported efforts to validate function point counts and
to establish industry benchmark data for function points.
“One form of that information which has become in-
creasingly popular is industry benchmark data. Bench-
mark data includes data used to quantify individual pro-
ject performance levels and to provide information on
the productivity and quality impact of various tools,
techniques, and methods. The good news is that the
software industry is mature enough to use valid bench-
mark data. It is also immature enough, or evolutionary
enough, to have insufficient data available, in some
cases, for reasonable statistical analysis” [29]. Major
problems are that the data is not always current, does not
include newer technologies or tools, and is not always
consistent.

Estimation is used not only for complete projects.
One current problem, for example, is the year 2000
problem. “Is counting lines of code a good way to esti-
mate your workload for year 2000 conversion” Though
that’s the most common method used, it’s not necessar-
ily the best. . . . Not alllanguages have an accurate defi-
nition of what a line of code is. That includes Query by
Example, Visual Basic, many database languages, and
spreadsheets such as Lotus and Excel . . .” [17]. Capers
Jones [17] believes function points can be used for this
estimation problem. “For example, each reference to a
calendar date in an application requires approximately
one function point to encode.”

Roger Heller summarizes his views offunction points as
[36]:

“In conclusion, Function Point Analysis has
proven to be an accurate technique to size, docu-
ment, and communicate a system’s capabilities. It
has been successfully used to evaluate the func-
tionality of real-time and embedded code systems
such as robot-based warehouses and avionics as
well as traditional data processing. As computing
environments become increasingly complex, it is
proving to be a valuable tool that accurately re-
flects the systems we deliver and maintain.”

Capers Jones [37,38] also suggests that function
points are now being used for “software quality studies,
software contract management, business process re-
engineering (BPR), and software portfolio control. The
Internal Revenue Service is also exploring the usage of
function point metrics for software taxation purposes.”
Thus the use of function point metrics seems to be
expanding. Perhaps the great danger with function
points is the misuse of the metrics. Function points are
only a size measurement.

“Function Points are a measure of software size
based on an evaluation of the logical user require-
ments. Similar to the square feet of a house, func-
tion points are independent of the development
methodology, tools or language used to build the
software. ... Just as the square-foot size of a house
does NOT equal the speed at which a house can be
built or its construction time, the Function Point
size does NOT equal productivity or work effort.”

Function points are supported by the International
Function Point Users Group (IFPUG). There is an IEEE
Standard [39] and a proposed international standard for
function points. IFPUG has created an established
counting practices manual and supports committees de-
veloping case studies and approaches for new technolo-
gies. Function points seem to be the only appropriate
software measurement available now for large complex,
diverse projects [40, 41].

5. Summary

If future progress is dependent on better measure-
ments and measurement techniques then perhaps we
need a new perspective on software measurement. Al-
though this paper is not an exhaustive survey of all
software measurements activities, there seems to be no
identified basis for software measurement which can
apply the principals of physical metrology. Just as we
count bits for the capacity of disks, etc. the basis for
most of the software measurements used today is some

576



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

kind of size measurement which is then combined with
other measures. Both size measurements, lines of code
(LOC) and function points, have problems with the
principals of units, scale and measuring uncertainty.

There is very little published about fundamental
measures for information technology or for computer
software, although some discussion has begun to surface
[42]. There is almost nothing relating these measures to
other measurement concepts such as uncertainty and
traceability. Capers Jones [43] believes that “. . . this
basic problem of measurement is one of the biggest
obstacles now facing the software industry.” Since
business and modern society has become dependent on
information technology both for a competitive edge and
a necessary tool, it seems appropriate that further
research is needed in this area.

6. References

[1] Rexmond C. Cochrane, Measures for Progress: A History of the
National Bureau of Standards, U.S. Department of Commerce,
National Bureau of Standards, Washington, DC, Second
Printing (1974) p. 9.

[3] Rexmond C. Cochrane, Measures for Progress: A History of the
National Bureau of Standards, U.S. Department of Commerce,
National Bureau of Standards, Washington, DC, Second
Printing (1974) p.508.

[2] International Vocabulary of Basic and General Terms in Metrol-
ogy, Second Edition, 1993, International Organization for
Standardization, Geneva, Switzerland.

[4] Roger S. Pressman, Software Engineering A Practitioner’s
Approach, McGraw-Hill Book Company, New York, New York
(1987) p. 89.

[5] Robert B. Grady and Deborah L. Caswell, Software Metrics:
Establishing a Company-Wide Program, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1987) p.4.

[6] Steve McConnell, Code Complete: A Practical Handbook of
Software Construction, Microsoft Press, Redmond, Washington
(1993) p.545.

[7] Wendy W. Peng and Dolores R. Wallace, Software Error
Analysis, NIST Special Publication 500-209, National Institute
of Standards and Technology, Gaithersburg, MD, March 1993.

[8] Stephen H. Kan, Metrics and Models in Software Quality
Engineering, Addison-Wesley Publishing Company, Reading,
Massachusetts (1995) p. 339.

[9] IEEE Standard Glossary of Software Engineering Terminology,
IEEE Software Engineer Standard Collection, Spring 1991
Edition, Institute for Electrical and Electronic Engineers, New
York, New York (1991) p.47-48.

[10] International Vocabulary of Basic and General Terms in Metrol-
ogy, Second Edition, International Organization for Standard-
ization, Geneva, Switzerland (1993) p. 11.

[11] IEEE Standard Glossary of Software Engineering Terminology,
IEEE Software Engineer Standard Collection, Spring 1991
Edition, Institute for Electrical and Electronic Engineers,
New York, New York (1991) p.61.

[12] Wendy W. Peng and Dolores R. Wallace, Software Error
Analysis, NIST Special Publication 500-209, National Institute
of Standards and Technology, Gaithersburg, MD, March 1993,
p. 5-4.

[13] American National Standards Committee X3, Information
Processing Systems, American National Dictionary for Informa-
tion Processing Systems, Information Processing Systems
Technical Report X3/TR-1-82, Computer and Business Equip-
ment Manufacturers Association, Washington, DC (1982) p. 82.
(Also Federal Information Processing Standard 11-2)

[14] Roger S. Pressman, Software Engineering A Practitioner’s
Approach, McGraw-Hill Book Company, New York, New York
(1987) p. 91.

[15] J. Brian Dreger, Function Point Analysis, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey (1989) p. xiv.

[16] Draft International Standard ISO/IEC DIS 14143-1, Information
Technology—Software Measurement—Part 1: Definition of
Functional Size Measurement, International Organization for
Standardization (1996) p. v.

[17] Richard Adhikari, Approaching 2000, Information Week, p. 44.
October 7, 1996.

[18] Roger S. Pressman, Software Engineering A Practitioner’s
Approach, McGraw-Hill Book Company, New York, New York
(1987) p. 94.

[19] Chris F. Kemerer, Reliability of Function Points Measurement:
A Field Experiment, Massachusetts Institute of Technology,
(abstract) (1990).

[20] Graham C. Low and D. Ross Jeffery, Function Points in the
Estimation and Evaluation of the Software Process, IEEE Trans.
Software Eng.16 (1), 63 (1990).

[21] Roger S. Pressman, Software Engineering A Practitioner’s
Approach, McGraw-Hill Book Company, New York, New York
(1987) p. 92.

[22] Roger Heller, Introduction to Function Point Analysis, Cross-
Talk, J. Defense Software8 (11), 24 (1995).

[23] J. Brian Dreger, Function Point Analysis, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey (1989) p. 63.

[24] J. Brian Dreger, Function Point Analysis, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey (1989) p. 64.

[25] J. Brian Dreger, Function Point Analysis, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey (1989) p. 65.

[26] Stephen H. Kan, Metrics and Models in Software Quality
Engineering, Addison-Wesley Publishing Company, Reading,
Massachusetts (1995) p. 344.

[27] IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software, IEEE Std 982.2-1988,
IEEE Software Engineering Standards Collection, 1994 Edition,
Institute for Electrical and Electronic Engineers, New York, New
York (1994) p. 15.

[28] Stephen H. Kan, Metrics and Models in Software Quality
Engineering, Addison-Wesley Publishing Company, Reading,
Massachusetts (1995) p. 256.

[29] David Herron, Software Industry Benchmark Data: Facts or
Fiction?, Metricviews, Newsletter of the International Function
Point Users Group, Summer 1996, p. 28.

[30] M. R. Vigder and A. W. Kark, Software Cost Estimation and
Control, Institute for Information Technology,National Research
Council Canada, Ottowa, Ontario, Canada, NRC No. 37116,
February 1994, p. 21.

[31] M. R. Vigder and A. W. Kark, Software Cost Estimation and
Control, Institute for Information Technology,National Research
Council Canada, Ottowa, Ontario, Canada, NRC No. 37116,
February 1994, p. 29.

[32] M. R. Vigder and A. W. Kark, Software Cost Estimation and
Control, Institute for Information Technology,National Research
Council Canada, Ottowa, Ontario, Canada, NRC No. 37116,
February 1994, p. 22.

577



Volume 104, Number 6, November–December 1999
Journal of Research of the National Institute of Standards and Technology

[33] M. R. Vigder and A. W. Kark, Software Cost Estimation and
Control, Institute for Information Technology,National Research
Council Canada, Ottowa, Ontario, Canada, NRC No. 37116,
February 1994, p. 28.

[34] M. R. Vigder and A. W. Kark, Software Cost Estimation and
Control, Institute for Information Technology,National Research
Council Canada, Ottowa, Ontario, Canada, NRC No. 37116,
February 1994, p. 37.

[35] Capers Jones, Metrics & Measurement: Software Sizing
Through Function Point Analysis, Application Development
Trends, 3 (4) 22 (1996).

[36] Roger Heller, Introduction to Function Point Analysis,
CrossTalk, J. Defense Software8 (11), 34 (1995).

[37] Capers Jones, Metrics & Measurement: Software Sizing
Through Function Point Analysis, Application Development
Trends, 3 (4), 32 (1996).

[38] Carol Dekkers, Function Point Industry Averages ‘Be Careful to
Compare Apples to Apples,’ Metricviews,Summer 1996, p. 24.

[39] IEEE Standard for Software Productivity Metrics, IEEE STD
1045-1992, Institute of Electrical and Electronics Engineers,
Inc., New York, New York.

[40] Capers Jones, Applied Software Measurement: Assuring
Productivity and Quality, McGraw-Hill, Inc., New York, NY
(1991).

[41] Capers Jones, The Role of Function Point Metrics in the 21st
Century, The Voice , International Function Point Users Group,
Westerville, OH (1996) p. 32-34.

[42] Austin Melton, ed., Software Measurement, International
Thomson Computer Press, London, UK (1996) 244 pp.

[43] Capers Jones, Sizing Up Software, Sci. Am.279(6), 104 (1998).

About the author: Martha Gray is a computer scientist
in the NIST Information Technology laboratory. The
National Institute of Standards and Technology is
an agency of the Technology Administration, U.S.
Department of Commerce.

578


